Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(49): 17974-17980, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011496

RESUMO

Global phosphoproteome profiling can provide insights into cellular signaling and disease pathogenesis. To achieve comprehensive phosphoproteomic analyses with minute quantities of material, we developed a rapid and sensitive phosphoproteomics sample preparation strategy based on ultrasound. We found that ultrasonication-assisted digestion can significantly improve peptide identification by 20% due to the generation of longer peptides that can be detected by mass spectrometry. By integrating this rapid ultrasound-assisted peptide-identification-enhanced proteomic method (RUPE) with streamlined phosphopeptide enrichment steps, we established RUPE-phospho, a fast and efficient strategy to characterize protein phosphorylation in mass-limited samples. This approach dramatically reduces the sample loss and processing time: 24 samples can be processed in 3 h; 5325 phosphosites, 4549 phosphopeptides, and 1888 phosphoproteins were quantified from 5 µg of human embryonic kidney (HEK) 293T cell lysate. In addition, 9219 phosphosites were quantified from 1-2 mg of OCT-embedded mouse brain with 120 min streamlined RUPE-phospho workflow. RUPE-phospho facilitates phosphoproteome profiling for microscale samples and will provide a powerful tool for proteomics-driven precision medicine research.


Assuntos
Fosfoproteínas , Proteômica , Animais , Camundongos , Humanos , Proteômica/métodos , Fluxo de Trabalho , Fosforilação , Fosfoproteínas/metabolismo , Fosfopeptídeos/análise , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...